
UNIVERSITY OF CALIFORNIA 

SANTA CRUZ 

WAVESHAPING WITH DC OFFSET: 

A COMPUTATIONALLY INEXPENSIVE METHOD OF MUSICAL SYNTHESIS 

 

A thesis submitted in partial satisfaction 

of the requirements for the degree of 

MASTER OF SCIENCE 

in 

COMPUTER SCIENCE 

 

By David Van Brink 

June 1993 



ABSTRACT 

ones with complex spectral evolutions by several computationally cheap 

methods. One of these, “waveshaping”, is traditionally performed by submitting a 

sine wave, of varying amplitude, to a polynomial function. Both the sine wave 

and the polynomial function, or “shaping function”, are implemented via table 

lookups. The properties of the resulting waveform have been well analyzed and 

understood. The present work expands the technique to include a sine wave of 

varying amplitude summed with a varying DC offset. The properties of the 

resulting waveform are analyzed. 

 

Also, a user interface for controlling these two parameters is proposed and 

demonstrated. The principles of this interface may be applied to other difficult-to-

control methods of musical synthesis. 
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Introduction 
Background 

Recently, I was peripherally involved with some software engineering work for a sound-

playback system on a commercial, general-purpose microcomputer. It was desired to play 

between one and several sampled sounds simultaneously (depending upon the available CPU 

bandwidth), using software to resample and mix. The output channel and the sampled sounds 

were both 8 bits wide, linearly encoded. The problem was that if several channels were summed, 

and then divided down into the 8-bit range again, there was a significant loss of data. The solution 

arrived at, quite naively, was to use a nonlinear transfer function that retained full resolution for 

small amplitudes, and rolled off towards the extrema. 

For example, suppose we wish to mix two signals. If we consider the 8-bit range to 

represent the amplitudes from -1 to +1, then summing the two signals yields a value with a range 

from -2 to +2. Dividing by two brings the signal back into a legal range for output. The result is 

that each signal is played at one half its original volume, and with only 7 bits of effective 

resolution. This was undesirable because most of the time the audio played too quietly, and 8 bits 

is already a very poor resolution of signal for audio use; 7 or fewer becomes nearly intolerable. 

The transfer function (for division-by-two) may be graphed as follows. 
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The sampled sounds we were playing, however, only occasionally required the full 

available signal range. That is, when two 8-bit signals were summed, they rarely exceeded an 8-

bit value. One solution is to simply limit the output range to the allowable values. This results in 

full volume playback, and no loss of resolution, except when occasional “clipping” of the output 

channel occurs, which is aurally undesirable. (Hard clipping sounds quite harsh and buzzy; it is 

the sound produced by an overdriven transistor audio amplifier.) The transfer function for this 

form of clipping is shown in the following graph. 
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A compromise between these two methods is to use a “soft clipping” function. This 

function should retain full amplitude for small signals, and gradually clip for higher amplitude 

signals. While this introduces some harmonic distortion for high-amplitude signals, it was a 

viable tradeoff for the particular, moderately low-quality audio system involved. The final 

transfer function used is graphed below. 
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The transfer function was implemented as a lookup table. The thought occurred to me 

that by putting arbitrary functions into that lookup table, various forms of harmonic distortion 

could be induced on a submitted signal. The interesting feature of the distortion was that 

harmonics were added to the submitted signal. The method was clearly cheap to implement, and 

might possibly be useful in the context of musical synthesis. 

Subsequent conversations and research revealed that, like most ideas with any merit, this 

one had been previously explored. However, as the topic still seemed intriguing, I looked for 

some missing bits of the published work on the subject, and have, I hope, filled in a minor crevice 

in the available literature. 
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Previous Work 

Nonlinear functions have long been a factor in audio electronics: a negative factor. Audio 

work often consists ensuring fidelity to an input signal, rather than altering it. In 1970, R. A. 

Schaefer described the harmonics produced by passing a normalized sine wave through a transfer 

function specified by a polynomial or power series (Schaefer 1970). Schaefer paid particular 

attention to the transfer function produced by a semiconductor’s p-n  junction (the output current 

is Io (ekv - 1) where v   is the input  voltage, and Io  and k  are constants for the particular 

junction). Since he was employed by the Rodgers Organ Company, we may presume that 

combinations of diode junctions were being utilized to produce various organ timbres. Schaefer 

also gives a method for computing the polynomial transfer function given a particular desired 

output spectrum, which requires computing the coefficients of Chebyshev polynomials. 

 

Source Voltage  

Typical semiconductor transfer function 
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C. Y. Suen expanded upon Schaefer’s equations by allowing a non-normalized sinusoidal 

input (Suen 1970). Symbolically, this involved adding a scalar to the input sine wave. This 

technique came to be known as nonlinear distortion, or “waveshaping” synthesis, and has been 

well analyzed in a digital music context since 1979 (Le Brun 1979, Arfib 1979).  

Generally, the method described consists of passing a sine wave of varying amplitude 

through a polynomial shaping function (the “shaping function” is the “transfer function” 

described above). Changing the amplitude of the sine wave affects how much of the shaping 

function is used. A polynomial is convenient, because the output signal will have no harmonics 

higher than the highest degree of the polynomial. Certain power functions are nearly band limited 

when used as a shaping function. Sin x , for example, has factorially small coefficients, and so, 

while there are infinitely many harmonics in the produced signal, the higher ones are insignificant 

(and, in fact, disappear within the resolution of any digital audio system). 

Several variations on this technique have been detailed in the literature. The published 

analyses describe what spectrum is produced given a particular shaping function, and submitted 

signal. The simplest case is a single submitted sine wave, although other functions have been 

analyzed. In some cases, a second stage of amplitude modulation is described, to decouple the 

shaping function’s effective amplitude from the resultant signal volume.            J. Beauchamp 

makes use of a digital filter to provide a realistic instrument formant for brass tone synthesis 

using waveshaping (Beauchamp 1979). Another possible post-process is ring modulation, to 

transpose the harmonics to an arbitrary frequency, and to add inharmonic frequency components. 
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Without ring modulation, all harmonics produced are integer multiples of the frequency 

of the submitted sine wave. The ratios among these harmonics are the same regardless of the sine 

wave’s frequency. De Poli analyzes the use of multiple waveshaping components of varying 

phases which are summed, to produce spectra that vary as a function of the frequency of the 

source sine wave (De Poli 1984). 

One way to view waveshaping synthesis is to think of marching back and forth, 

sinusoidally, across a section of a shaping function. By modulating the amplitude of the submitted 

sine wave, different parts of the shaping function are used. 
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If 0.4 sin x  is submitted to this shaping 

function, only part of the function is used. 
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One possible generalization of this technique is to use a shaping function with more than 

one dimension. D. Freed (Freed 1984) considers the case where the shaping function is realized in 

the complex plane, and a “phasor,” rather than a sinusoid, is submitted to it. A phasor is a signal 

of the form eiωt. Thus, rather than using a portion of the linear shaping function, for a particular 

amplitude, a “ring” of the complex plane is utilized. The resultant waveform is then analyzed in 

terms of its phasor content, with harmonics of the form eihωt. Since varying the amplitude of the 

submitted phasor results in completely different rings being used, sharing no coordinates in 

common, complete control of all harmonic phasors for each amplitude may be realized with a 

sufficiently high-order shaping polynomial. Furthermore, the analysis using complex numbers 

becomes much simplified in several ways. Conveniently, a complex phasor can be interpreted as 

a real-valued audio signal by simply ignoring the imaginary component. This seems somewhat 

exciting, until one realizes that because the concentric rings used by various amplitudes are 

nonintersecting, the method is equivalent to using a large number of wavetables. Thus, this 

variation of waveshaping lacks the feature of reusing portions of the shaping function. 
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A more straightforward approach was taken by Y. Mitsuhashi (Mitsuhashi, 1982) and 

further analyzed by A. Borgonovo and G. Haus (Borgonovo & Haus 1986). This method consists 

of traversing a modified-ellipsoid “orbit” through a function of two variables. The function – 

analogous to the shaping function in standard waveshaping – is chosen such that the boundaries 

along the unit square, x  or y  = ±1, evaluate to zero, as well as the 1st derivative along that 

boundary. Thus, the orbit is free to “wrap around” the edges of this function, while still producing 

a smooth waveform. Their analysis was performed experimentally: a wave form was numerically 

calculated, and then analyzed for frequency content. 

Function used for “Synthesis by 
Function of Two Variables.” The 
boundary’s value and first derivative 
are zero.

 

In the area of waveshaping synthesis, there is little formal method for synthesizing 

specific sounds. J. Beauchamp has laboriously synthesized brass tones, through much analysis for 

the specific instrument, and with A. Horner has implemented genetic algorithms to search for 

good matches to particular sounds (Beauchamp & Horner 1992). 

D. Arfib (Arfib 1980) has used a number of waveshaping techniques in his compositions, 

including standard waveshaping to produce clarinet tones, and ring modulation to produce 

harmonic percussion sounds. By passing a sine wave through two consecutive shaping functions, 

each a Chebyshev polynomial, a complex evolution is rendered, which terminates on a single 

frequency some multiple of the submitted sine wave. 
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According to G. De Poli (De Poli 1983), “With waveshaping, listening and graphic 

considerations have more relevance than purely mathematical formulations,” and  “There is a 

large and not intuitive problem in choosing the [polynomial] coefficients, however, and further 

research is required.” 

The Present Work 

I found two specific problems that seemed inadequately illuminated. First, several articles 

mention that adding a DC offset to the submitted signal can also affect timbre. This uses different 

horizontal sections of the shaping function. Using a DC offset to modify timbre is particularly 

appealing, because of its computational cheapness. However, the published analyses did not 

include this parameter; that omission is rectified in this document. 

Second, I have developed a novel user interface, consisting of a means to naturally 

manipulate the evolution of two parameters over time. This requires a reasonable way to map the 

“timbre space” for a given shaping function to a human-interpretable form. I have started by 

mapping two parameters of waveshaping (amplitude and DC offset, or “shift”) to the two axes of 

a graph. Within the graph, each point represents the spectrum produced by those two parameters. 

The challenge, then, is to find a good mapping from the many-dimensional space encompassed by 

an audio spectrum to the three-dimensional space afforded by possible colorings.  

Superimposed on this spectral mapping is a path through that space, representing the 

evolution of the two parameters over time. 

This mapping may perhaps be usefully applied to other spectral spaces, such as those of 

FM synthesis.  
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The next sections detail analyses of various waveshaping synthesis techniques which 

include the DC offset parameter. Following those are a description and discussion of the 

implementation and user interface that has been built to experiment with standard waveshaping 

with DC offset. 
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Analysis 

Analyses of several variations on waveshaping with DC offset will be 

presented. These variations share two important features in common. First, they 

can all be implemented quite cheaply via the generation of a sinusoid (or two, for 

the complex and two-dimensional variations) of variable amplitude, added to a 

constant, and passed through a lookup table. Second, the resultant spectrum is 

completely known, based upon straightforward numerical methods – at least for 

the ideal case, where sampling and digitization errors are ignored. 

The three methods are 1) Standard Waveshaping With DC Offset, which 

adds a single new parameter to waveshaping as described by Arfib,      Le Brun, 

and others, 2) Complex Waveshaping, which adds a complex DC offset 

parameter to waveshaping as described by Freed, and 3) Two-Dimensional 

Waveshaping, which has some similarity to the methods described by Mitsuhashi 

and others, but is defined in such a way as to be more fully susceptible to Fourier 

analysis. 

The first method, Standard Waveshaping With DC Offset, will be the 

most thoroughly explored. The formulae derived have been implemented in a 

realtime synthesis application, as described in the Implementation section. 



12 

 

Standard Waveshaping With DC Offset 
Harmonics Produced By A Polynomial Shaping Function 

The following section details the solution for the harmonic content of a sinusoid passed 

through a polynomial nonlinear transfer function, where the sinusoid has been modified in 

amplitude and DC offset. 

We can construct a polynomial nonlinear transfer function, 

s (x ) = pn x n !
n = 0

d

, 

[1] 
where 

s (x ) is the shaping function (applied to x ), 
d  is the highest degree of the polynomial, 
pn  are the polynomial coefficients. 

The function (resultant waveform) for a cosine wave, with amplitude scaling and DC 

offset applied, submitted to a polynomial shaping function is 

f (t ) = s (cos t ) = pn A cos t + S n !
n = 0

d

 

[2] 
where 

t  is time (sans pitch ratio), 
f (t ) is the resultant waveform as a function of time, 
A is the amplitude of the cosine wave submitted to the shaping function, 
S is the DC offset, or “shift” through the function. 
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Since f (t ) is an even function, it can be described as a sum of cosines. Furthermore, 

since the function is periodic (with period 2π), it may be described as a sum of cosines of integer 

frequency ratios:  

f (t ) = ah cos ht !
h = 0

!

  , 

[3] 
where  ah  is the amplitude of the h -th harmonic. 

The Fourier series will be used to determine the amplitude of each harmonic of the base 

frequency. Only the cosine transform need be used, as the phase of each harmonic is known. The 

formula for the amplitude of each frequency component is given by 

ah = 1
!

pn A cos t + S n!
n = 0

d

-!

!

 cos ht dt 

. 
[4] 

A bit of manipulation can be done on this. First, we can express (A cos t + S )n  as a 

combinatorial sum. 

ah = 1
!

pn n 
k  A cos t kS n - k!

k = 0

n 

!
n = 0

d

-!

!

 cos ht dt 

 

[5] 

The nested summations can be rearranged by swapping the indices, giving 

ah = 1
!

A cos t k n 
k  pnS n - k!

n = k

d 

!
k = 0

d 

-!

!

 cos ht dt 

. 
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[6] 

The first summation may be placed outside the integral. 

ah = 1
!

A cos t k n 
k  pnS n - k!

n = k

d 

-!

!

!
k = 0

d 

 cos ht dt 

 
[7] 

Several of inner terms may similarly be factored out. 

ah = 1
!

 A k  n 
k  pnS n - k!

n = k

d 

 cosk t   cos ht dt 
-!

!

!
k = 0

d 

 
[8] 

The definite integral of [8] has a solution (Gradshteyn & Ryzhik 1965). (See also 

Appendix A for the solution to this integral.) 

coskt   cos ht dt 

-!

!

 = k < h  or k  + h  is odd:   0

otherwise: 
!

2k - 1
 

k 
k - h 

2

 

[9] 

Substituting this into [8], we have 

 

ah = 1
!

 A k  n 
k  pnS n - k!

n = k

d 

 n   < h  or n  + h  is odd:   0

otherwise: 
!

2k - 1
 

k 
k - h 

2

!
k = 0

d 

. 
[10] 

More rearrangement yields 

ah = 1
!

 A h + 2k n 
h + 2k  pnS n - (h + 2k)!

n = h + 2k

d 

 
!

2h + 2k - 1
 h + 2k 

k !
k = 0

d - h
2

. 
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[11] 

Finally, the π’s are canceled, and the inner summation is made zero-based, to give a 

concise and computable (if not particularly closed form) solution. 

 
ah = 2 A h + 2k

2h + 2k
 h + 2k 

k  n  + h + 2k
n  S npn +h +2k!

n = 0

d  - (h + 2k )

!
k = 0

d - h
2

. 
[12] 

It is useful to note from equation [12] that the amplitude for any harmonic 
numbered greater than the degree of the polynomial is zero. Thus, the spectrum produced 
is band limited to the degree of the polynomial. 

Comparison With Standard Result 

If we take S  as zero, we should have the solution for standard waveshaping. When     S = 

0, the Sn  term in the inner summation drives all terms to zero, except when n = 0. Hence, the 

inner summation may be removed, and zero substituted for n, yielding 

ah = 2 A h + 2k

2h + 2k
 
h + 2k 

k  ph + 2k!
k = 0

d - h
2

. 
[13] 

This is identical to the formula for standard waveshaping given by Le Brun (Le Brun 1979). 

Harmonics Produced In Terms Of Initial Harmonics 

When designing an instrument for waveshaping synthesis, a known harmonic spectrum 

might be a useful starting point. From there, modulations to amplitude and shift might be 

explored. 

As has been well documented in the literature regarding waveshaping, we can obtain a 

particular harmonic spectrum for the case A = 1 (and S  = 0, by default) by constructing the 

shaping polynomial as a sum of Chebyshev polynomials of the first kind. 
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s (x ) = b m T m (x )!
m  = 0

d

, 

[14] 
where 

bm  is the amplitude of the m-th harmonic when A = 1 and S = 0. 
Tm is the m-th Chebyshev polynomial. 

This works because of the property of Chebyshev polynomials that  

Tn (cos t ) = cos nt . Thus, when a cosine is submitted to this shaping function, at unity amplitude 

and no shift, we have 

s (cos t ) = b m T m (cos t )!
m  = 0

d

 = b m cos mt !
m  = 0

d

. 

[15] 

The rightmost part of equation [18] matches equation [3]; by expressing the shaping 

function as a sum of Chebyshev polynomials, the harmonic amplitudes for unity amplitude and 

no shift follow immediately. 

To express the dynamic spectral behavior in terms of the initial spectrum, we must derive 

the polynomial coefficients from the Chebyshev coefficients, which can then be applied to the 

previous analysis [12]. 

The coefficient of xj   for the m-th Chebyshev polynomial, Tm  (Spanier & Oldham 1987) 

is 



17 

 

t  m
(j ) = 

if j > m or  j + m  is odd: 0

otherwise: 

(-1)
m - j 

2  2j  m  

m + j 

2
j 

m + j   . 

[16] 

The coefficient for degree xj  for the polynomial expansion of the shaping function is then 

pj = bm t  m 
(j )!

m = 0

d 

 = bm 

if j > m  or  j + m  is odd: 0

otherwise: 

(-1)
m - j 

2  2j  m  

m + j 

2
j 

m + j 

!
m = 0

d 

 

. 

[17] 

Eliminating the conditional clause, we get 

pj = b 2m + j  
(-1)m 2j -1 (2m +j ) 

m + j 

j 

m +j 
!

m = 0

d -j 

2

 . 

[18] 

Now, we substitute this for the polynomial coefficients in equation [12].  

ah = 2 (  A
h + 2k

2h + 2k
 h + 2k 

k 
 n  + h + 2k

n  S n !
n = 0

d  - (h + 2k )

 !!
k = 0

d - h
2

                         b 2m +n +h +2k 
(-1)m 

 2( n +h +2k -1 (2m +n +h +2k) m + n +h +2k 
m 

m +n +h +2k
  )!

m = 0

d -(n +h +2k ) 

2

. 

[19] 

Canceling some of the powers of 2 leaves 
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ah =  A h + 2k h + 2k 
k 

 2n n  + h + 2k
n  S n !

n = 0

d  - (h + 2k )

 !!
k = 0

d - h
2

                   b 2m +n +h +2k 
(-1)m 

  (2m +n +h +2k) 
m + n +h +2k 

m

m +n +h +2k
!

m = 0

d -(n +h +2k ) 

2

. 
[20] 

Comparison With Standard Result 

Setting S  to zero in equation [20] should produce Le Brun’s result for standard 

waveshaping. Setting S  to zero eliminates one of the summations yielding 

ah =  A h + 2k h + 2k 
k 

 b 2m  +h +2k 
(-1)m 

  (2m +h +2k) 
m +h +2k 

m

m +h +2k
!

m = 0

d -(n +h +2k ) 

2

!
k = 0

d - h
2

. 
[21] 

This is not exactly the same form as Le Brun’s result. However, the rightmost part of the 

above equation can be manipulated to get the following transformation: 

(2m +h +2k) 
m +h +2k 

m

m +h +2k

    !    
m +h +2k  - 1

m - 1
 + 

m +h +2k 
m  

[22] 

which, when substituted into equation [21], exactly matches Le Brun’s form: 

ah =  A h + 2k h + 2k 
k 

 b 2m + h + 2k (-1)m 
 

m +h +2k  - 1
m - 1

 + 
m +h +2k 

m!
m = 0

d -(n +h +2k ) 

2

!
k = 0

d - h
2

. 
[23] 
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Harmonics Produced By Shaping Function of Sin X 

If we use a single sine wave as a shaping function, we can substitute its polynomial 

expansion into the equation for waveshaping with shift. The polynomial (or power series) 

expansion of sin x   is 

sin x = 
x 1

1!
 - x 3

3!
 + 

x 5

5!
 - x 7

7!
 

. 
[24] 

If the sine wave is to be of arbitrary frequency, then we have 

sin Fx = 
F

1
x 1

1!
 - F

3
x 3

3!
 + 

F
5
x 5

5!
 - F

7
x 7

7!
 

 
[25] 

where 
 F is the frequency ratio of the sine wave. 

The polynomial coefficients may be easily stated from this. 

p i  = 
i  is even  :  0

i  is odd  :  
F i -1

i - 1
2

i  !  
[26] 

These coefficients are substituted into the waveshaping solution [12], where the 

maximum degree has been set to ∞.  

ah = 2 A

2

h + 2k 
 h + 2k 

k 
 

n  + h + 2k
h + 2k

 S n ! 

      

n + h   is even  :  0

i  is odd  :  
F n + h + 2k -1

n + h  - 1
2

(n + h + 2k )!

!
n = 0

!

!
k = 0

!

 
[27] 

A few factorials cancel out,  and the term F n+h+2k  is broken into F n  and Fh+2k. 
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ah = 2 

A F 

2

h + 2k 

k ! (h + k )!
  

n + h    is even  :  0

otherwise  :  
(FS )n -1

n + h  - 1
2

n ! 

!
n = 0

!

!
k = 0

!

 
[28] 

The right-hand summation is, in fact, an expansion for sine and cosine. Replacing it gives 

us a straightforward solution. 

ah = 2 

A F 

2

h + 2k 

k ! (h + k )!
  ! 

h    is even  :  sin SF 
h    is odd  :  cos SF !

k = 0

!

 
[29] 

It is interesting to note that when the shift, S , is zero, increasing the amplitude, A ,  of the 

submitted cosine wave is exactly  the same as increasing the frequency, F , of the shaping 

function sine wave. Similarly, the greater the frequency of the shaping function, the more rapid an 

effect changing the shift has. 

 A A  

Submitting a sine wave through a sinusoidal shaping function is, incidentally, equivalent 

to FM synthesis, where the carrier frequency is zero, the modulation frequency is that of the 

submitted sine wave, and the index of modulation is A . 

Generation of Shaping Function for Arbitrary Shift and Amplitude 

If we wish to define the resultant spectrum for particular values of A and S, we can 

construct a shaping function by taking the shaping function that produces the desired spectrum for 

A = 1 and S = 0, and then stretching and sliding the function to the desired position. 
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Equation [18] specifies the polynomial coefficients for a shaping function that produces a 

particular spectrum for A = 1 and S  = 0. 

pj = b 2h + j  
(-1)h 2j -1 (2h +j ) 

h + j 

j 

h +j 
!

h = 0

d -j 

2

 

. 
[18] 

This is based directly upon a sum of Chebyshev polynomials. These coefficients are used to 

establish the shaping function, as given in equation [1]. 

s (x ) = pn x n !
n = 0

d

 
[1] 

We can express the polynomial shaping function that produces a particular spectrum for 

arbitrary values of A  and S  in terms of the shaping function that produces that spectrum for A  = 

1 and S  = 0. We would like the following relation to hold true: 

s (Ax + S ) = s (x ) , 
[30] 

where s (x )  is a polynomial shaping function having the spectral amplitudes bn  for 

amplitude A  and shift S . Altering this into an operation on s (x ), we have s (x ) = s  x

A
 - S 

A 
 . 

Substituting this into the polynomial summation of equation [1] gives us 

s (x ) = pn x
A

 - S 
A 

n 
!

n = 0

d

 

. 
[31] 

We can change the inner exponentiation to a summation: 
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s (x ) = pn n 
j  x 

A 
j -S 

A

n-j 
!
j = 0

n

!
n = 0

d

 

. 
[32] 

This double summation may be rearranged to group like powers of x , yielding 

s (x ) = 1

A j 
 pn n 

j  -S 
A

n-j 
!
n = j

d 

 x j !
j  = 0

d

 

, 
[33] 

which gives an expression of the coefficients of the desired shaping function, s (x ) ,  in terms of 

the coefficients of s (x ): 

pj   = 1

A j 
 pn n 

j  -S 
A

n-j 
!

n = j 

d 

 

, 

[34] 
where pj  are the polynomial coefficients of the shaping function s (x ). 

The pn’s of this equation [34] could be replaced with the right-hand side of equation [18] 

(with the appropriate variable change) to give a solution for the polynomial coefficients of a 

shaping function directly in terms of the spectrum desired to be produced for values of A and S , 

but the form is ungainly. In practice, it is preferable to compute, first, the coefficients given by 

[18], and use these to compute the coefficients given by [34]. Conveniently, each pj   depends 

only upon the like-and-greater numbered pn ’s, so this transformation may be performed in-place. 

It turns out, however, that in practice, the waveform resulting from most shaping 

functions grows rapidly out of range as A is increased from the value at which the shaping 

function was initially generated. For general applications, it is probably best to define the 

spectrum only at point of maximum amplitude, such as A  = 1, S  = 0. 
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Complex Waveshaping  

D. Freed (Freed 1984) presents an analysis of waveshaping with complex arithmetic. In 

that analysis, the harmonics are determined in terms of “phasors,” which are, in some sense, the 

complex-number analog of a real sinusoid. A phasor has the form eiωt, where ω is the angular 

frequency (and i  is √-1). Although a phasor is a complex signal, it has a straightforward 

interpretation as an audio signal: simply throw away the imaginary part. A phasor can be thought 

of as a circular path in the complex plane. Thus, the real part of the phasor traces a cosine 

function, while the imaginary part traces a sine function. Discarding the imaginary part of the 

phasor changes its signal content: the Fourier transform of a phasor contains only a single 

negative frequency component, while the signal without the imaginary component contains 

positive and negative frequencies of equal value. 

For the sake of completeness, the equivalent analysis is presented here, with the 

additional parameter of a complex DC offset parameter, S, or shift. 

As with real-valued waveshaping, the shaping function is represented as a polynomial. 

s (x ) = pn x n !
n = 0

d

 
where 

s (x ) is the shaping function (applied to x ), 
d  is the highest degree of the polynomial, 
pn  are the polynomial coefficients, each a complex value. 

 Where a cosine wave was submitted to the shaping function in real-valued 

waveshaping, a phasor, with amplitude scaling and DC offset will be submitted to the complex 

shaping function. 
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f (t) =
n
p

n=0

d

! Ae
it
+ S( )

n

 
[35] 

where 
A  is a scaling factor of the submitted phasor (it may be complex; this will only affect the 

phase of the resultant signal), and 
S  is a DC offset applied to the submitted phasor. 

The “harmonics” produced are terms of the form eiht  where h  is the number of the 

harmonic produced. The analysis consists of merely separating out those terms. First we apply the 

binomial theorem. 

f (t) =
n
p

n=0

d

!
n

j

" 

# 
$ % 
& j=0

n

! S
n ' j
A
j
e
itj

 
[36] 

Next the summations are swapped, to group all like phasors together. 

f (t) =
n
p

n= j

d

!
n

j

" 

# 
$ % 
& 
S
n' j
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j
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# 
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!
 

[36] 

And, so, the amplitude of each harmonic phasor is simply the contents of the inner 

summation. 

 
aj =

n
p

n= j

d

!
n

j

" 

# 
$ % 
& 
S
n' j
A

j

 
[37] 
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Two-Dimensional Waveshaping 

Another musically applicable two-dimensional variation on waveshaping is to extend the 

polynomial with a second variable. The technique is to submit an ellipsoid to a polynomial of two 

variables. 

Three possible submitted 
ellipsoids, plotted atop the 
range of a function of 2 
variables.

 

As with one-dimensional waveshaping, the use of a polynomial ensures that the resultant 

waveform is band-limited, in this case to twice the greatest degree of the polynomial. This 

method is somewhat different than that described by Mitsuhashi (Mitsuhashi 1982) and A. 

Borgonovo and G. Haus (Borgonovo & Haus 1986), in that their shaping function was very 

simple, and was traversed with a more complex “orbit.” 

The analysis proceeds quite analogously to the one-dimensional case already described. 

First, the shaping function is expressed in terms of x  and y : 

s x,y( ) = pjkx
j
y
k

k= 0

e

!
j=0

d

!
, 

[38] 
where pjk  are the polynomial coefficients. 

Next, the waveform produced is specified by substituting an ellipsoid for x  and y . 

f (t) = pjk Ax cos  t + Sx( )
j

Ay sin  t + Sy( )
k

k= 0

e

!
j=0

d

!
, 

[39] 
where 
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Ax  and Ay  are the two radii of the submitted ellipsoid, and 
Sx  and Sy   specify the center of the submitted ellipsoid. 

The exponentiated pieces are binomially expanded: 

f (t) = pjk
j

m

! 
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# $ 
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[40] 

This can be rearranged to a more convenient form, 

f (t) = pjk
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[41] 

As with one-dimensional waveshaping, for fixed values of the parameters, in this case, 

Ax, Ay, Sx, and Sy, the resulting waveform is fixed with period 2π, and all frequencies present are 

harmonics of that fundamental. To determine the amplitudes of these harmonics, the Fourier 

series can be used. Unlike one-dimensional waveshaping, however, the various harmonics have 

no definite phase relationship; we cannot merely take the cosine transform. Taking the Fourier 

series, we have 

ah = pjk
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[42] 
where ah is the amplitude of the h-th harmonic. 

The solution to the integral part of this equation is given in Appendix A, as Integral III. 

We merely substitute it in here, and cancel the single occurrence of π. 
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[43] 

A marvel of elegance and symmetry this form is not. It seems likely that there may be 

some possible simplifications to this result; alas, they shall not be here explored. However, we 

may at least establish the straightforward computability of the harmonic content of an ellipsoid 

submitted to a polynomial shaping function of two variables. 
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Implementation 

I have written an application for the Macintosh personal computer which 

implements the technique of Standard Waveshaping With DC Offset. To give the 

user access to the various capabilities of this synthesis technique, a user interface 

had to be designed. Unfortunately, little support  for the user interface for this 

sort of application could be found in the literature; common sense and good 

engineering have been used in its design. The justification for these interface 

elements will consist primarily of appeals to common sense in the User Interface 

section. 

Since the implementation was on a low-powered personal computer, 

several implementation shortcuts have been used. Although these do not 

represent new theoretical work, they will nonetheless be presented here, as they 

are certainly of great practical value to anyone interested in using this synthesis 

method. 
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User Interface 

To experiment with the technique of waveshaping synthesis, it was necessary to construct 

a software application that allowed all of the relevant parameters to be adjusted by the user. Some 

amount of feedback was desired, in order to render the process, as much as possible, 

understandable to the user. To this end, a user interface was designed and implemented that 

allows the user to modify the shaping function, and determine the evolution over time of the 

realtime parameters of amplitude and shift. 

 

Above is a screen image of a window taken from the waveshaping application. The 

following sections will describe each pane of this window. 
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Shaping Function 

 

The Shaping Function pane displays the shaping polynomial. This function is 

computed/modified based upon the harmonic level sliders in the Harmonic Levels pane. Both the 

horizontal and vertical axes represent the range [0, 1]. The highlighted area (black) shows the 

portion of the shaping function used by the “position marker” (white circle) in the Spectral Space 

pane. That is, the center of this highlighted section is the value of the shift parameter, and one 

half its width is the value of the amplitude parameter. (Alternatively, the left and right edges 

represent the range [S-A, S+A].) 

The shaping function is stored as a lookup table, and is recomputed as necessary when 

the sliders in the Harmonic Levels pane are adjusted. 
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Waveform 

 

The Waveform pane shows the steady state waveform produced from the values for 

amplitude and shift specified by the “position marker” in the Spectral Space pane. Also, the 

waveform shown corresponds to the highlighted section of the Shaping Function pane. The 

waveform represents one full cycle of a cosine wave submitted to the highlighted portion of the 

shaping function. 
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Spectral Space 

 

This Spectral Space pane is the densest pane, in terms of information presented. In this 

pane, the realtime parameters of amplitude and shift are placed in a two-dimensional space. The 

horizontal axis denotes the value of the shift parameter, ranging from -1 on the left to +1 on the 

right. This pane is aligned with the Shaping Function pane such that the value for the shift 

parameter have a spatial correspondence. That is, the two panes have identical horizontal extent, 

and represent the same [-1,1] range. 

The vertical axis is the range of the amplitude parameter, varying from zero at the 

bottom, to unity at the top. 

The colored triangular area (which is the full pane’s width at the bottom, and peaked at 

the top) represents the allowable values for amplitude and shift. Because the shaping function is 

only defined for the range [-1,1], and the range of the shaping function used for a particular pair 

of values for amplitude and shift is [S-A, S+A], the sum of the magnitudes of amplitude and shift 

must not exceed unity. Only the points within the triangle satisfy that condition. Thus, at full 

amplitude, the only allowable shift value is zero. 
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The triangle of allowable values has slightly curved edges. This is because the amplitude 

scaling is not linear. To increase the efficiency of the implementation, a phase-offset-cancellation 

method is used to modulate the amplitude of the submitted sinusoid: this costs an addition and a 

memory reference rather than a multiplication. The vertical axis, then, represents not exactly the 

amplitude, but the phase offset used, which is related to the cosine of the amplitude. (This is 

described more fully in the “Sine Wave Amplitude Modulation” section.) 

The white circle is a “position marker.” Whatever coordinates this marker lies on – it 

moves when the user clicks any place in the pane – are indicated by the selected area of the 

shaping function, the steady state waveform, and the relative harmonic values shown in the 

Harmonic Levels pane. While the user is clicking and dragging the position marker, the tone 

corresponding to that point in the spectral space is produced on the computer’s speaker. 

The line segments specify a temporal evolution of the two realtime parameters. Starting 

from the topmost “knot,” the values for amplitude and shift are evenly and slowly altered over 

time, until they correspond to the coordinates of the 2nd knot, and so on, to the last knot near the 

bottom. The rate of travel along the segment is partially indicated by the width of the line 

segment: the thicker the line, the slower the travel. The duration of each segment can be changed 

in the Spectral Evolution pane; each segment has constant duration while being manipulated in 

the Spectral Space pane. Thus, when the user clicks on one of the knots and drags it, the overall 

area of each line segment remains constant (within the pixel resolution of the display, at least). 

The effect is very much like stretching a rubber band. 
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The choice of colorings for the Spectral Space is, perhaps, the most interesting part of 

this pane. The intent was to specify something meaningful about the perceived character of the 

spectrum produced at each coordinate in the spectral space. The values that determine the tone at 

each point are the quantities present of each harmonic multiple of the base frequency. Thus, 

several dozen (or more, if still higher harmonics are used!) values completely specify the tone. 

However, the color space visible to the human eye is generally considered to be three-

dimensional. Thus, some values must be extracted from the specification of the tone, and 

collapsed down to the three available for color. In the present implementation, I have simply 

mapped the mean of the logs of harmonic numbers, standard deviation of the harmonic numbers, 

and overall volume to hue, intensity, and brightness, respectively (where “intensity” is the inverse 

of saturation).   

Mapping volume to brightness seems reasonable: the louder the sound it, the easier it is to 

spot on the screen. Areas of the parameter space that produce no sound are black.  

Changes in hue are very easy to see. Changes in overall harmonic content are verye asy 

to hear. For these reasons, I have mapped average harmonic to hue. The logs are taken of the 

harmonic numbers because our perception of pitch is logarithmic. That is, the aural difference 

between the fourth harmonic and the second harmonic is like the difference between the second 

and the first. The hue value for this representation of color is a circular scale; I have arbitrarily 

chosen to start the scale at blue, for low values, and end it at green, fir high values. The visual 

effect of this is to color the more “shrill” tones -- those with more upper harmonics -- with the 

brighter parts of the hue wheel. 
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There are undoubtedly better spectrum-to-color mappings possible. There has been some 

research performed on dimensional reduction of timbre space (Wessel 1979), but this has focused 

primarily upon complete instrument timbres, and not extracted spectra. A set of experiments to 

determine perceptual distance between various spectra could be performed, which would, 

hopefully, lead to a more perceptually useful color mapping. 
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Spectral Evolution 

 

The Spectral Evolution pane determines the timing between the knots drawn in the 

Spectral Space pane. The complete width of the pane represents a fixed duration, changeable 

from a menu item. The first, leftmost, knot is anchored, as is the rightmost one. The other knots 

may be moved left and right. The distance between any two knots represents the time necessary 

for the parameters to evolve from the knot on the left to the knot on the right. 
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Harmonic Levels 

 

The Harmonic Levels pane shows the harmonic content of the steady state tone that 

would be produced given the values for amplitude and shift specified by the position marker in 

the Spectral Space pane. The vertical range of each slider is from -1 at the bottom to +1 at the top. 

Since “negative amplitudes” of a frequency component are equivalent to a phase offset of π, the 

negative amplitude sounds  the same as a positive amplitude. However, arithmetically, a negative 

frequency component may lead to very different results in synthesis. To reflect these two 

contradictory views of negative frequency components, the sliders will display negative values 

both above and below the zero line. 

The harmonic sliders can be adjusted, which specifies a particular harmonic spectrum to 

be produced by the present values (as shown by the position marker) for amplitude and shift. In 

practice, however, it is almost always necessary to adjust the harmonic sliders for the parameter 

values A = 1, S = 0. Adjusting the sliders for any other position in the spectral space tends to 

produce shaping functions that are wildly out of range. 
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Waveform Generation 

Part of the appeal of waveshaping synthesis is that, while it doesn’t model any particular 

physical process, it does produce complex spectra, and it is computationally very cheap to 

implement. 

Sine Wave Amplitude Modulation 

The synthesis described here requires a sinusoid of controllable amplitude. In order to 

avoid a multiplication operation (which was relatively slow on the platform used), a phase-

cancellation technique was used to modulate the sinusoid’s amplitude. 

When a sinusoid is averaged with an out-of-phase copy of that sinusoid, the result is also 

a sinusoid, of a diminished amplitude: 

 
sin t  + p  + sin t  - p 

2
 = cos p  sin t 

, 
where 

t  is time (unscaled by frequency, here), and 
p  is phase offset. 

Since the sinusoid is being dephased forward and backward by equal amounts, before 

being averaged, the phase is preserved. To produce a sine wave of an amplitude between 0 and 1, 

we must choose p  such that its cosine is the desired amplitude. The phase offset, p,  ranges from 

0 to π/2, to produce amplitudes from 1 to 0. Borrowing A  from the earlier waveshaping 

equations, 

 
A  sin t  = 

sin t  + cos-1 A   + sin t  - cos-1 A  

2 . 
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Because of the user interface used to control the waveshaping parameters, there is no 

reason that the amplitude adjustment must respond linearly. That is, the user may manipulate p = 

cos-1A  directly. However, because the slope of cos-1A  is infinite at A = 1, it is desirable to use 

only part of the inverse cosine curve.  

Phase Offset: p 

p   = cos A 

1.0

0.0

0 !/2

 

That is, when p  is near zero, p  must be changed a lot to make a small change in A ;  

when p  is near π/2, the relation between p  and A  is close to linear. (If the whole inverse cosine 

curve is utilized, then all timbre-paths must use a vertical portion to pass through the maximum 

amplitude point, which is inconvenient for the user.) 

 
Minimum p  value of  p0  = 0 

If p  ranges all the way to zero (no attenuation at all) 
then the resulting spectral space is very concave, and any 
approach or departure to the apex of the space must be 
vertical (A parameter change only), to avoid passing outside 
the allowable parameter combinations. 
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Minimum p  value of p0  = π/4 

The edges of the usable part of the spectral space 
are slightly curved, but very nearly straight. Most importantly, 
the apex comes to a fairly wide angle, so there are many 
directions to approach and depart from that part of the space. 

To address this, we constrain the values of p  from p0  to π/2. The sinusoid amplitudes 

produced then range from cos-1p0  down to 0. To regain the full range from 0 to 1, we multiply 

the result by  1/cos-1p0 .The method finally used, then is 

A  sin t  = 
sin t  + p  + sin t  - p 

2 cos p0  

where p  ranges from p0  to π/2. Thus, the amplitude ranges from 1 down to 0. For the 

implementation, the sine is computed with a table lookup, and the values in the table have been 

prescaled by 1/(2 cos p0 ). Another optimization in the implementation is to allow a phase error, 

by offsetting from t  on only one of the sine computations. 

A  sin (t + p ) = 
sin t + sin t  + 2p 

2 cos p0  
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This saves a subtraction in one of the inner loops, at the expense of phase accuracy. So, 

as p  is changed, the phase of the sine wave generated changes; this can be interpreted as a pitch 

disturbance. However, in practice, this does not seem to be a problem; indeed, rapidly changing 

either parameter (amplitude or shift) can result in pitch perturbations, but these effects do not 

sound unnatural. 

Waveform Generation 

The waveform generated has the form 

f(t) = s(A sin ωt + S), 

where 
t is time, 
f(t) is the resultant waveform, 
s(x) is the shaping polynomial, 
A is the amplitude of the submitted sinusoid, 
S is the shift (DC offset) of the submitted sinusoid, and 
ω is the base frequency of the produced tone. 

Each sample requires an addition to “bump” the sine-lookup pointer by an increment 

appropriate to generate the desired frequency. The sine operation is a table lookup. The scaled 

sinusoid A sin ωt is thus computed as described above, using two table lookups and two 

additions. Adding the shift is another addition, and passing this through the transfer function s(x) 

is one more table lookup. 

I implemented this using 16 bit fixed point arithmetic. Following is the section of code 

that produces sampled audio output. 
 

*w++ = shapeTable[ ( 

 (sineTable[(sample + dephase)& kSineTableMask)>>16] 
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 + sineTable[sample>>16])  

 + (shift>>16)]; 

sample = (sample + sampleStep) & kSineTableMask; 

where 

 w is a pointer to the buffer being filled with digital audio sample data, 

 sineTable[] is a lookup table containing one complete sine wave, 

 shapeTable[] is the shaping polynomial, 

 sample[] is the sine-lookup pointer, 

 dephase is the amount to dephase the sine wave to attenuate its amplitude, 

 kSineTableMask is a mask to remove the upper bits of the sine table pointer, to keep the 

pointer within the table, 

 shift is the shift parameter for waveshaping, and 

 sampleStep is the amount to advance through the sine table on each sample to produce 

the desired pitch. 

Thus, each sample requires a total of 4 additions, 2 AND operations, 3 shifts, and 3 table 

lookups. (Standard waveshaping without DC offset takes one fewer addition.)  
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The table sizes were chosen by trial and error, to achieve reasonable fidelity. If some 

form of interpolation were used, the tables could undoubtedly be made smaller. The shaping 

function table was set to 8192 entries long, by 8 bits deep (because the sound output hardware 

was an 8-bit DAC). In order to easily accommodate maximum amplitude, the sine table was 

scaled to have a maximum value of +/- 4095 (actually, larger, since there was some minimum 

amplitude attenuation for the reasons described earlier). The value -4096 was omitted to allow for 

a symmetrical table, and a true zero crossing. The sine table length was set to 4096, which, 

according to (Moore 1977) should have a signal-to-noise ratio of better than 60 dB at worst-case 

frequency stepping values (those near unity). 
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Conclusion 

Presented here are all the necessary formulae for determining the spectra producible by 

several variations of the synthesis technique of nonlinear distortion, or waveshaping. The simplest 

of these techniques, Standard Waveshaping with DC Offset – submitting a sine wave to a 

polynomial shaping function, with the available realtime parameters of amplitude and shift – has 

been the most thoroughly analyzed. The algorithm has been implemented on a low-power 

personal computer (Macintosh CI, 25 MHz 68030), producing several simultaneous voices), 

demonstrating the algorithm’s computational efficiency. 

Waveshaping is an appealing method for sound synthesis, since it can be digitally 

implemented quite cheaply, and produces rich sounds with complex spectral evolutions. Like 

other methods of synthesis (frequency modulation, for example), there is some analytic difficulty 

in controlling the resultant waveform. The introduction of another parameter, “shift,” provides a 

larger search space for particular spectra. 

Although parameters for simulations of some instruments have been determined in 

previous research by analytic means and by automated parameter searches, an interactive means 

to adjust parameters can contribute greatly to the usefulness of waveshaping for musical 

composition. The interface and implementation described here is an initial attempt at that goal, 

making waveshaping synthesis even more practical for musical applications. 
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Appendix: Solution To Integrals 
Integral I 

e iktdt 

-!

!

 
[44] 

The solution to this form, where k  is an integer, will be useful in the forms to follow. 

Since the solution to ∫eax dx  is eax /a , it will be useful to separate out the case where ikt  is zero. 

e iktdt 

-!

!

 = 
k = 0 : 1

k " 0 :e ikt
  dt 

-!

!

 
[45] 

Next, the two parts are solved, retaining the condition. 

e iktdt 

-!

!

 = 
k = 0 : t

k " 0 :e ikt

ik
  
-!

!

 
[46] 

Substituting in the values of t  gives us: 

e iktdt 

-!

!

 = 
k = 0 : 2!

k " 0 :e ik! - e -ik!

ik  
[47] 
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This may be simplified with the identity eit - e-it = (1/2i )sin t . 

e iktdt 

-!

!

 = 
k = 0 : 2!

k " 0 :
sin k !

-2k  
[48] 

Since k  is an integer, the sine will always evaluate to zero. Thus, we have the solution. 

e iktdt 

-!

!

 = 
k = 0 : 2!

k " 0 :0

 
[49] 

In use, this integral will be used in the solution to a Fourier transformation, which 

requires dividing by half the range of the integration. The π factor will usually cancel out. 

Integral II  

cosk t  cos ht  dt 

-!

!

 
[50] 

This form is used to calculate the harmonics present in standard waveshaping, and in 

waveshaping with a DC offset. The variable k  is an integer. First, the cosines are replaced by 

their exponential representations: 

cosk t  cos ht  dt 

-!

!

 = 1

2k
eit + e-it k

 1

2
eiht + e-iht  dt 

-!

!

 
[51] 
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The k - power expression may be replaced with its binomial expansion: 

cosk t  cos ht  dt 

-!

!

 = 1

2k + 1

k 
r  e

itr
e-it (k - r)!

r = 0

k

 eiht + e-iht  dt 

-!

!

 
[52] 

This can be multiplied through, and expressed as a sum of two integrals with the form described 

above, Integral I. 

cosk t  cos ht  dt 

-!

!

 = 1

2k + 1

k 
r  eit (2r - k + h ) dt 

-!

!

 + eit (2r - k - h ) dt 

-!

!

!
r = 0

k

 
[53] 

The two integrals are replaced with their solutions, via Integral I. 

cosk t  cos ht  dt 

-!

!

 = 1

2k + 1

k 
r  

r = k + h

2
 : 2!

else: 0
 + 

r = k - h

2
 : 2!

else: 0
!
r = 0

k

 
[54] 

The conditions, r = (k + h )/2 and  r = (k - h )/2, will be true over the range for r  if and 

only if k + h  is even, and k ≥ h , and, in that case, they will both be true. That fact can be used to 

remove the summation, and simplify the form to a single condition, which completes the solution. 

cosk t  cos ht  dt 

-!

!

 =

k  " h  and k + h  is even:  
!

2k - 1
 

k 
k - h 

2

 

else: 0  

[55] 

This result is given in a rather more roundabout form by (Gradshteyn & Ryzhik 1965). 
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Integral III 

cosmt   sinn t  e iht  dt 

-!

!

 
[56] 

This form arises when evaluating the harmonics produced by waveshaping with a 

polynomial of two variables, a two-dimensional form of waveshaping. m  and n  are integers. We 

proceed similarly to the evaluation of Integral II. First, the cosine and sine are replaced by their 

exponential forms. 

cosmt   sinn t  e iht  dt 

-!

!

 = 1

2m
eit  + e-it m 1

i n 2n 
eit  - e-it n 

 e iht  dt 

-!

!

 

[57] 

The two power expressions are replaced by their binomial summations. 

cosmt   sinn t  e iht  dt 

-!

!

 = 1

2m

m 
r eitr  e-it (m - r )!

r = 0

m 

   !

-!

!

                                                         1

i n 2n 

n 
s eits e-it (n - s ) -1 n - s !

s = 0

n

 e iht  dt 

 

[58] 

This can be regrouped to a more compact form, with the exponentials all combined. 
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cosmt   sinn t  e iht  dt 

-!

!

 = 1

i n 2m + n 
-1 n - s n 

s   m 
r   !!

s = 0

n

!
r = 0

m 

                                                                                 e it ( 2r + 2s - m - n + h ) dt 

-!

!

 

[59] 

This matches the form solved as Integral I, which may be substituted in. 

cosmt   sinn t  e iht  dt 

-!

!

 = 1

i n 2m + n 

-1 n - s n 
s   m 

r   !

    
r + s = m + n - h

2
 : 2!

otherwise  : 0

!
s = 0

n

!
r = 0

m 

 

[60] 

The conditional will always evaluate to zero unless m + n  - h  is even, and m + n  ≥ h . 

This can be simplified, then, to a single summation and condition, which is the solution: 

cosmt   sinn t  e iht  dt 

-!

!

 = 

     

m + n + h  is odd 
or h > m + n 

: 0 

else : 
!

i n 2m + n - 1

m 
r  

n 
m + n - h 

2
 -r 

 -1
m + n - h 

2
 -r 

!
r = max 0 ,m - n - h 

2

min m ,m + n - h 

2

 

[61] 

If we set n  to zero, then we should have, immediately, Integral II. The only value for the 

range of index r  is (m  - h  )/2; the summation is removed. 
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cosmt   sin0t  e iht  dt 

-!

!

 = 

     

m + h  is odd 
or h > m  

: 0 

else : 
!

2m- 1

m 
m - h 

2

 
0

m - h 

2

 - m - h 

2

 -1
m  - h 

2
 - m  - h 

2
 

 
[62] 

This is then trivially reduced to the result of Integral II. 

cosmt  e iht  dt 

-!

!

 =  

m + h  is odd 
or h > m  

: 0 

else : 
!

2m- 1

m 
m - h 

2  

[63] 

 


